English  |  正體中文  |  简体中文  |  Items with full text/Total items : 1657/1756
Visitors : 3727975      Online Users : 142
RC Version 5.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://140.112.115.32:8080/ir/handle/987654321/2813

Title: Paclitaxel exerts antiplatelet and antithrombotic activities: Additional benefit from use of paclitaxel-coated balloons and -eluting stents in coronary revascularization and prevention of in-stent restenosis
Authors: Lin, Kuan-Hung;Li, Jiun-Yi;Chen, Ray-Jade;Chen, Ting-Yu;Hsu, Shao-Hsuan;Wang, Hsueh-Hsiao;Peng, Hsien-Yu;Sun, Yu-Yo;Lu, Wan-Jung
Contributors: 視光學系
Keywords: GPVI;Paclitaxel;Platelet activation;thrombus formation
Date: 2023-05-01
Issue Date: 2025-08-11 14:44:20 (UTC+8)
Abstract: Introduction
Paclitaxel is a microtubule-stabilizing drug used to treat several types of cancer, including ovarian and breast cancer. Because of its antiproliferative effect on vascular smooth muscle cells, balloons and stents are coated with paclitaxel for use in coronary revascularization and prevention of in-stent restenosis (ISR). However, mechanisms underlying ISR are complicated. Platelet activation is one of the major causes of ISR after percutaneous coronary intervention. Although the antiplatelet activity of paclitaxel was noted in rabbit platelets, the effect of paclitaxel on platelets remains unclear. This study investigated whether paclitaxel exhibits antiplatelet activity in human platelets.
Methods and results
Paclitaxel inhibited platelet aggregation induced by collagen but not that induced by thrombin, arachidonic acid, or U46619, suggesting that paclitaxel is more sensitive to the inhibition of collagen-induced platelet activation. Moreover, paclitaxel blocked collagen receptor glycoprotein (GP) VI downstream signaling molecules, including Lyn, Fyn, PLCγ2, PKC, Akt, and MAPKs. However, paclitaxel did not directly bind to GPVI and cause GPVI shedding, as detected by surface plasmon resonance and flow cytometry, respectively, indicating that paclitaxel may interfere with GPVI downstream signaling molecules, such as Lyn and Fyn. Paclitaxel also prevented granule release and GPIIbIIIa activation induced by collagen and low convulxin doses. Moreover, paclitaxel attenuated pulmonary thrombosis and delayed platelet thrombus formation in mesenteric microvessels without significantly affecting hemostasis.
Conclusion
Paclitaxel exerts antiplatelet and antithrombotic effects. Thus, paclitaxel may provide additional benefits beyond its antiproliferative effect when used in drug-coated balloons and drug-eluting stents for coronary revascularization and prevention of ISR.
Relation: Thrombosis Research, 225, 63-72. https://doi.org/10.1016/j.thromres.2023.03.017
Appears in Collections:[視光學系] 期刊論文

Files in This Item:

File SizeFormat
index.html0KbHTML1View/Open


All items in MMUIR are protected by copyright, with all rights reserved.

 


DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback